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Bures and statistical distance for squeezed thermal states
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Abstract. We compute the Bures distance between two thermal squeezed states and deduce the
statistical distance metric. By computing the curvature of this metric we can identify regions
of parameter space most sensitive to changes in these parameters and thus lead to optimum
detection statistics.

1. Introduction

There has been increasing interest recently in the geometry of quantum state space [1, 2].
Although some general features of the geometry are known, little has been learned
concerning the details of the geometry of high-dimensional pure and impure states. The
initial discovery of a geometric phase by Berry [4] was interpreted by Simon [3] as
the holonomy transformation in parallel transporting the adiabatic eigenstate in parameter
space [5]. Since then the concept of the geometric phase has been broadened to cope
with non-adiabatic, non-cyclic and non-unitary evolutions [7]. However, although the
formal understanding of the geometric phase has progressed, knowledge of the underlying
geometry described by this phase has not. This is mainly due to computational difficulties
in calculating metric tensors. These metric tensors are functionals of infinite-dimensional
density matrix operators. In this paper we calculate the metric and curvature of the parameter
space of squeezed thermal quantum states. Using a basic understanding of the quantum
metric from a statistical inference viewpoint we identify regions of parameter space which
yield large changes in the quantum state making its determination easier in such a parameter
regime. In section 2 we review the work done to date in uncovering the geometry of a
quantum state and introduce the Bures metric. The main results of this paper are the method
of calculation and final results in section 4. We have tried to keep this paper as short as
possible while including enough detail for the reader to be able to reproduce their own
calculation.

2. Review

In this section we review the basics of the geometry of quantum states and introduce concepts
associated with the natural extension of the Fubini–Study metric to impure density matrices
and, in particular, the Bures metric.

For pure quantum states the geometry isCP n and is essentially the geometry of the
horizontal section of the fibre bundle over the space of pure states with a fibre group
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U(1). The connection defining this section is ‘natural’ in that the resulting metric and
distance functions are invariant under a global change in phase of the states involved. More
precisely, the expectation value of any operator in the state|ψ〉 is unchanged under the action
|ψ〉 → eiθ |ψ〉. We can thus split up the space of pure states into conjugacy classes under the
U(1) action and denote the class formed from the state|ψ〉 as theray at |ψ〉. We can define
a distance between two rays as the smallest transition probability between any two elements
in the separate rays, i.e.D2

FS = inf ‖ |ψ1〉 − eiθ |ψ2〉‖2. Extremizing over the relative phase
θ we obtain the well known Fubini–Study distance for pure statesD2

FS = 2(1−|〈ψ1|ψ2〉|2).
One can show that the geometry is Kähler and the metric, ds2

FS, is the Hessian of a suitable
Kähler potential [6]. This Riemannian metric arises in calculations of Berry’s phase and
generalizations thereof [7] and in aspects of quantum distinguishability [12]. The geometry
of impure quantum states has received little attention. A Riemannian metric for classical
probability distributions was obtained independently by Wootters [8] and Campbell [9]. A
transition amplitude between two impure quantum states was discovered by Bures [10].
This amplitude and the related metric has been studied at length with regard to geometric
phase by Uhlmann [11]. The same metric has also been obtained in other work relating to
the optimal statistical distinguishability between two quantum states [12].

Although some formal work has been done on the geometry of impure quantum states,
few concrete results concerning the details of the metric have been found. This is due to the
technical difficulties in computing the Bures (or statistical distance) metric. Before giving the
formula we will outline briefly the origins of this metric following Uhlmann. The derivation
follows the above argument for the Fubini–Study metric on pure states. Beginning with an
impure stateρ onepurifies this state by enlarging the Hilbert space into a Hilbert–Schmidt
space through the ‘square root’ ofρ, i.e. H → Hext ≡ H ⊗ H∗ whereρ ≡ WW ∗, W is
pure in Hext and where TrWW ∗ < ∞. The ‘square root’W , of ρ is defined up to right
multiplication by an arbitrary unitary operatorV . We again have a fibre bundle structure
with base space

√
ρ and fibreRV , whereRV is right multiplication byV . The natural

distance inHext is the Hilbert–Schmidt metric d2(W1, W2) ≡ Tr(W1 − W2)(W1 − W2)
∗.

This gives a natural connection on the bundle and one can again define a distance between
two fibres to be the smallest Hilbert–Schmidt distance between elements of the fibres. The
solution to the extremization ofW(λ), whereλ is an affine parameter, iṡW = GW where
G = G∗ and˙≡ d/dλ. The induced metric on the horizontal section is just

(Ẇ , Ẇ )HS = (GW, GW)HS = Tr G2ρ = 1
2 Tr Gρ̇ . (1)

The extremizedW(λ) is parallel transported with respect to the natural connection and gives
rise to an evolution forρ(λ) in H which obeys

ρ̇ = Gρ + ρG. (2)

The Bures distance which results from the extremization can be written as

D2
B(ρ1, ρ2) = 2

[
1 − Tr

√
ρ

1/2
1 ρ2ρ

1/2
1

]
(3)

while the infinitesimal Riemannian metric resulting from this distance is

ds2
B ≡ Tr G2ρ = 1

2 Tr G dρ (4)

where

dρ = Gρ + ρG. (5)

This metric is also known as the statistical distance metric and is symmetric inρ1 andρ2

[12].
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Investigation into the detailed structure of the Bures distance has been hampered by the
complicated square-root factors in (3). The distance and metric have been calculated for
the spin-12 system [13] and the spin-1 system [14, 15]. It was found that the geometry of
the spin-12 state space was of constant curvature. However, the geometry of the spin-1 state
space possessed a non-constant curvature. It was further proved in [16] that the geometry
of state space for spin-n is not of constant curvature and not even locally symmetric for
2n + 1 > 3. To directly solve for the Riemannian metric (4) one must solve the matrix
Lyapunov equation (5). For quantum systems possessing a finite-dimensional representation
the method of annihilating polynomials can be used to solve the Lyapunov equation [17].
This becomes prohibitive forn > 3 and results in non-unique expressions with respect
to the parametrizations chosen forδρ. Other solution methods are available but are again
difficult to compute, i.e. recursive solutions.

In the following we will first calculate the Bures distance between two undisplaced
thermal squeezed states and from this derive the associated Riemannian metric. Calculating
the curvature of this metric we find the space is not of constant curvature and can interpret
this curvature as a measure of optimal quantum distinguishability between the states.

3. Bures distance

From the work of Bures and Uhlmann [10, 11] the transition amplitude between two quantum
states may be written as

D2
B(ρ1, ρ2) = 2

[
1 − Tr

√
ρ

1/2
1 ρ2ρ

1/2
1

]
. (6)

Due to the complexities of computing the trace, studies of this transition amplitude have
concentrated only on finite-dimensional examples with concrete results for dimension 2 [14]
and 3 [15]. In the following we will compute the transition amplitude between two thermal
squeezed states with density matrices parametrized in the form

ρ(β, r, θ) = ZS(r, θ)T (β)S†(r, θ) (7)

where

S(r, θ) = exp(ζK+ − ζ ∗K−)

T (β) = exp(−βK0)

ζ = reiθ

and

K+ = 1
2a†2

K− = 1
2a2 K0 = 1

2(a†a + 1
2)

[K0, K±] = ±K± [K−, K+] = 2K0 .

HereS(r, θ) is the one-photon squeeze operator,a is the single-mode annihilation operator,
Z is chosen so that Tr(ρ) = 1, and(K0, K±) are the generators of theSU(1, 1) group.
Equation (7) thus represents an undisplaced squeezed thermal state. We have written the
density matrix in the Schur formρ = UT U † whereU is unitary andT is diagonal in the
eigenbasis ofK0. This decomposition is relatively straightforward in the case of Gaussian
ρ [18]. However, we find that the following arguments do not seem to hold if we expand
the states considered to include displaced thermal squeezed states. We are thus restricted to
density matrices continuously parametrized by three variables(β, r, θ).

In the following this Schur factorization will play a central role. With this factorization
we can easily define the square root of a positive operator. A possible alternative method is
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to represent the squeeze and thermal operators as 2× 2 matrix representations ofSU(1, 1).
However, it is unclear to the author at this time how one can consistently define the square
root in this representation without again forming the Schur decomposition of the matrix
representation. We now outline how the Schur decomposition yields the square root of a
positive operatorρ.

Through an insertion of unity, the Schur factorization ofρ yields a diagonal
representation of the state. Choosing orthogonal eigenstates|λi〉, such thatT (β)|λi〉 =
λi(β)|λi〉 andZ

∑
i λi = 1, we can insert the resolution of unity

∑
i |λi〉〈λi | ≡ 11 into (7) to

get

ρ = ZUT U † = ZUT 11U †

= Z
∑

i

UT |λi〉〈λi |U † = Z
∑

i

λiU |λi〉〈λi |U †

= Z
∑

i

λi |ui〉〈ui |

where |ui〉 ≡ U |λi〉, 〈ui |uj 〉 = δij and Tr(ρ) = 1. Thus we have diagonalizedρ over a
complete orthonormal set of states with corresponding probabilitiesPi = Zλi . It is now an
easy matter to findρ1/2:

ρ1/2 = W =
∑

i

P
1/2
i |ui〉〈ui |V (8)

where V is an arbitrary unitary operator andρ = WW †. Essentially,V encodes the
ambiguity in taking the square root of an infinite-dimensional operator. To evaluate the
trace in (6) we need only computeρ1/2

1 . From the alternate definition of the Bures distance

D2
B = (

√
ρ1,

√
ρ2)HS = inf Tr(W1 − W2)(W1 − W2)

† (9)

where ρ1 = W1W
†
1, ρ2 = W2W

†
2, we see that the definition (6) is invariant under the

transformationWi → WiṼ where Ṽ Ṽ † = 1. By right multiplying W1 and W2 by V
†

1
in (6) we can shift away theV1 dependence of

√
ρ1 to get

ρ
1/2
1 =

∑
i

Pi |ui〉〈ui | . (10)

Since we need not calculateρ1/2
2 we can ignore the unitaryV2V

†
1 appearing inρ1/2

2 .
Let us now summarize the manipulations needed to calculate the complicated trace factor

in (6). Givenρ1 we can now compute
√

ρ1 taking the positive section for the square root.

Using ρ2 we form the operatorA = ρ
1/2
1 ρ2ρ

1/2
1 and, using the Baker–Campbell–Hausdorff

identities, we rearrangeA into Schur form

A = UATAU
†
A . (11)

In this representation we can easily compute the square root, again taking the positive
section. All that remains is to take the trace. The rearrangement ofA into Schur form
is not trivial. The operatorsUA and TA can be found only in the case of undisplaced
squeezed thermal states. For displaced states a Schur resolution was not found throughBCH

disentangling. It may be that in the case of displaced states the positive section for the
square root is not the correct ansatz and the more general form (8) is needed. We will not
address this here and will only consider states of the form (7) which do result in Schur
decompositions forA.

We now calculate Tr
√

ρ
1/2
1 ρ2ρ

1/2
1 where

ρi = ZiS(ri, θi) exp(−βiK0)S
†(ri, θi) (12)
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with normalization Tr(ρ) = 1 or Z = 2 sinhβi/4. Writing Ti = exp(−βiK0) we must
rearrangeρ1/2

1 ρ2ρ
1/2
1 to have the Schur form

ρ
1/2
1 ρ2ρ

1/2
1 = Z1Z2S1T

1/2
1 S

†
1S2T2S

†
2S1T

1/2†
1 S

†
1

= Z1Z2S1S3T3S
†
3S

†
1 ≡ A . (13)

Taking the positive square root and trace gives

Tr
√

A =
√

Z1Z2 Tr e−β3/2K0

=
√

sinhβ1/4 sinhβ2/4

sinhβ3/8
. (14)

We must now use Baker–Campbell–Hausdorff identities to expressβ3 in terms of
(β1, β2, r1, r2, θ1, θ2). This first step is to collapse the productS

†
1S2 in (13) into a single

squeeze operator. This is accomplished through the identity [20]

S†(r1, θ1)S(r2, θ2) = e−iφS̄(r̄, θ̄ − φ)R̄(φ) (15)

where R(φ) = eiφK0 is the rotation operator while the parameters(ri, θi) are related to
(r̄, θ̄ , φ) through

Cr̄θ̄eiφσ3 = Cr2θ2Cr1θ1 (16)

where

Crθ =
[

coshr e2iθ sinhr

e−2iθ sinhr coshr

]
(17)

andσ3 is the third Pauli matrix. Collapsing this product in (13) gives

ρ
1/2
1 ρ2ρ

1/2
1 = Z1Z2S1T

1/2
1 S̄R̄T2R̄

†S̄†T 1/2
1 S

†
1 . (18)

However,R̄T2R̄
† = T2 sinceR̄, T2 commute. The factor exp(iφ) cancels since it is a scalar.

We thus have

ρ
1/2
1 ρ2ρ

1/2
1 = Z1Z2S1T

1/2
1 S̄T2S̄

†T 1/2
1 S

†
1 . (19)

We must now rearrange the productT
1/2

1 S̄T2S̄
†T 1/2

1 S
†
1 into Schur form. To do this we use

Baker–Campbell–Hausdorff disentangling. The particular method we use was outlined in
[19]. Using the faithful group representation ofSU(1, 1) where

K+ =
[

0 1
0 0

]
K− =

[
0 0

−1 0

]
K0 = 1

2

[
1 0
0 −1

]
(20)

we can express the operatorS̄ as

S̄ = exp(ζ̄K+ − ζ̄ ∗K−) =
[

coshγ̄ eiθ̄ sinhγ̄

e−iθ̄ sinhγ̄ coshγ̄

]
(21)

whereγ̄ =
√

ζ̄ ζ̄ ∗ and θ̄ =
√

ζ̄ /ζ̄ ∗. The operatorTi is represented as

Ti =
[

e−βi/2 0
0 eβi/2

]
. (22)

To re-express the productT1S̄T2S̄
†T1 asST3S

† we represent each operator as a 2×2 matrix,
multiply and compare the resulting entries to obtain

coshβ3/2 = cosh2 γ̄ cosh((β1 + β2)/2) − sinh2 γ̄ cosh((β1 − β2)/2) .

Denoting

Y = cosh2 β3/4 cosh2 γ̄ cosh2((β1 + β2)/4)) − sinh2 γ̄ cosh2((β1 − β2)/4)



3728 J Twamley

and inserting this back into (14) we get

Tr
√

ρ
1/2
1 ρ2ρ

1/2
1 =

√
2 sinhβ1/4 sinhβ2/4√√

Y − 1
. (23)

All that remains is to express̄γ in terms of(r1, r2, θ1, θ2). From equation (17) we obtain

cosh2 γ̄ = cos2 1θ cosh2 1r + sin2 1θ cosh2 6r (24)

where1θ = θ1 − θ2, 1r = r1 − r2 and 6r = r1 + r2. Defining β+ = (β1 + β2)/4 and
β− = (β1 − β2)/4 we finally get

Y = cosh2 β3/4

= cos2 1θ [cosh2 1r cosh2 β+ − sinh2 1r cosh2 β−]

+ sin2 1θ [cosh2 6r cosh2 β+ − sinh2 6r cosh2 β−]

and

Tr
√

ρ
1/2
1 ρ2ρ

1/2
1 = 2 sinhβ1/4 sinhβ2/4√√

Y − 1
. (25)

For the case1θ = 1r = 0, i.e. only a change in temperature, equation (25) gives

D2
B(ρ(β1), ρ(β2)) = 2

[
1 −

√
sinhβ1/4 sinhβ2/4

sinh((β1 + β2)/8)

]
. (26)

Equation (26) gives the Bures distance between two thermal states with temperatures
proportional to 1/β1 and 1/β2. The distance function (26) (or more generally (6)) is a
proper distance function on the space of states. However, the resulting form (26) is clearly
not a distance function arising from a local metric structure defined on the parameter space.
The restriction of the Bures distance to pure states, the Fubini–Study distance, is derivable
from a local metric, i.e.D2

FS = 2(1−|〈ψ1|ψ2〉|2) = 2 cos1θ where1θ is the angle between
the two Hilbert space vectors|ψ1〉, |ψ2〉. From Uhlmann’s derivation of the Bures distance
as the minimum Fubini–Study distance between the purifications of

√
ρ1 and

√
ρ2 in the

larger Hilbert–Schmidt space we see that the Bures distance arises from a metric structure
in this larger Hilbert–Schmidt space. To derive this metric we can proceed in two ways.
We can use standard perturbation analysis to evaluate ds2

B ≡ D2
B(ρ, ρ + δρ). This was done

in [14] with the result

δD2
B = ds2

B = 1

2

∑
i 6=j

〈ui |δρ|ui〉〈uj |δρ|ui〉
Pi + Pj

(27)

where |ui〉 are the eigenstates ofρ. This metric also appears in [12] and is known there
as the statistical distance metric. The Bures or statistical distance metric has been mostly
studied in the case of pure states [1], while for impure states only a few finite-dimensional
examples have been examined [13–15]. Since we know the orthogonal eigenstates ofρ we
could compute (27) explicitly. This is simply done in the case1r = 1θ = 0 but becomes
quite tedious otherwise. Instead we note that

ds2
B = gαβ dxα dxβ = 1

2

d2

dt2
DB(ρ(β, r, θ), ρ(β + tδβ, r + tδr, θ + tδθ))

∣∣∣∣
t=0

. (28)

Using equations (25), (6) and (28) one can eventually obtain

ds2
B = ds2

SD = 1
2[1 + sechβ/2](dr2 + sinh2(2r) dθ2) + 1

64 sinh2 β/4
dβ2 (29)
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where the subscripts indicate Bures or statistical distance. The metric may be simplified
somewhat by defining exp(−2u) = tanhβ/8 to give

ds2
B = ds2

SD

= 1
2[1 + tanh2 u](dr2 + sinh2(2r) dθ2) + du2 . (30)

As a check we have directly computed the dβ2 contribution from (27) while for pure states
(β → ∞) the metric reduces to the known form [21]. Equipped with the metric (29), one
can compute geometrical quantities such as the scalar curvature

RSD = −8(cosh2 β/4 + 12 sinh4 β/4)

cosh2 β/2
. (31)

It is interesting to note that the scalar curvature is independent of the ‘unitary’ parameters
r andθ and only depends on the ‘non-unitary’ parameterβ. This may be understood from
the work of Dittmann [15]. Dittmann shows that in finite dimensions the geometry of the
parameter space is locally isometric toSn−1 × U(n)/T n. The homogeneous submanifold
U(n)/T n, which, in our case, is parametrized byr(β) and θ(β), has a constant curvature
depending only onβ. Thus, in the general case, the curvature should only be a function of
the invariantsβi [22] of the stateρ.

4. Distinguishability measure

A physical significance can be attributed to the curvatureRSD (equation (31)). From a
statistical inference viewpoint the statistical distance can be understood as a measure of
how well one can, in principle, determine the parameters describingρ throughN arbitrary
generalized measurements. For more on this viewpoint see [12, 23]. The errorδX in
estimating the parameterX by analysing the data obtained fromN copies of ρ(X) is
bounded by

N〈(δX)2〉
(

ds

dX

)2

> 1 (32)

where ds/dX is the rate of change of statistical distance with respect to the parameterX

for a single copy ofρ(X). Thus, if two states are separated by a statistical distance of ds

then one must perform at leastN > 1/ds2 measurements on identically prepared copies to
distinguish between the two. To estimate a parameter separation between two states one
can make use of (32).

However, to go beyond distinguishing between two states and to provide a complete
estimation of a state given a reference state, one can argue that the accuracy of estimation of
the completestate should be independent of the particular parametrization used. The most
natural geometric quantity which is parametrization (coordinate) independent is the scalar
curvature of the statistical distance. Following this argument, we can interpret the curvature
RSD as the degree of local distinguishability of the complete state, i.e. ifRSD is large then
few measurements are needed to estimate the parameters of a neighbouring state while ifRSD

is small, many measurements will be required to estimate the parameters of a neighbouring
state. We plot the behaviour ofRSD(β) in figure 1. From the form ofRSD (equation (31)),
we see that the degree of distinguishability diverges asβ → ∞. Similarly, from (29) we find
that the integrated statistical distance between a pure state andany impure state diverges.
This feature was also seen in a similar calculation by Braunstein and Milburn [23]. As was
explained there, the degree of distinguishability,RSD, diverges at the pure state boundary
because only one measurement is needed to differentiate between a pure state withβ = ∞
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Figure 1. Graph of the curvature of the statistical distance metricRSD versus inverse temperature
β in equation (31).

and an impure state withany β < ∞. This principle was the basis of the one-shot clock in
[23] where the parameter to be estimated was time. From equation (31) we can also identify
local maxima (atβ = 0) and minima (atβ = 4 cosh−1 5/

√
22). The ultimate accuracy of

parameter estimation at various values ofβ is reflected in the behaviour of the degree of
distinguishabilityR. This measure can serve as a guideline for optimal operating regimes in
quantum non-demolition measurements. By targeting the measurements to operate in those
regions of high distinguishability one can obtain information about the quantum system in
the least number of measurements.

5. Conclusion

In this paper we have examined the geometry of the quantum state. After reviewing the
previous work we showed how one can extend the definition of the quantum metric to deal
with impure quantum states. The resulting metric is known as the Bures metric. To compute
the geometry of a quantum state using this Bures metric necessitates the computation of
the square root of a density matrix. Up until now this has only been done for very simple
quantum systems. Using a Schur decomposition ofρ we have calculated the Bures distance
and associated Riemannian metric between two squeezed thermal states. The Riemannian
manifold is not of constant curvature as was suggested by spin-1

2 calculations. It was argued
that the scalar curvature of the Riemannian manifold can serve as a measure of the ultimate
accuracy in determining the parameters defining a quantum state. The method used here can
be generalized to more complicated quantum states if a Schur factorization can be found.
More generally, computable methods for solving the finite- or infinite-dimensional Lyapunov
equations need to be investigated before one can understand the geometric structures of
high-dimensional impure quantum states.
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